Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Article in English | LILACS-Express | LILACS | ID: biblio-1536252

ABSTRACT

Pinostrobin, marker compounds from Boesenbergia rotunda with various pharmacological activities, have been studied extensively, including synthesizing its derivatives, which have potent pharmacological activities. This study aims to describe research related to B. rotunda, pinostrobin, and their derivatives. Metadata information was collected from Scopus in August 2022, with three keywords searched for article titles, abstracts, and keywords. Analysis and research mapping were carried out with VOSviewer. The most widely used synonym for the plant name was "Boesenbergia rotunda", in which Norzulaani Khalid from the University of Malaya, Malaysia, mostly reported research with the keywords "Boesenbergia rotunda", "pinostrobin", and "derivative". The majority of researchers come from institutions in Southeast Asia, such as Malaysia, Thailand, and Indonesia. Interestingly, no Chinese researchers have reported studies on this topic. The journals and publishers that publish the most articles with these three keywords are Bioorganic and Medicinal Chemistry Letters and Elsevier, respectively. This information will make it easier for researchers on this topic to find partners for collaboration and determine journals to publish their research results.


La pinostrobina, compuesto de marcadores de Boesenbergia rotunda con diversas actividades farmacológicas, se ha estudiado ampliamente, incluida la síntesis de sus derivados que tienen potentes actividades farmacológicas. Este estudio tuvo como objetivo describir investigaciones relacionadas con B. rotunda, pinostrobina y sus derivados. La información de metadatos se recopiló de Scopus en agosto de 2022, con tres palabras clave buscadas para títulos de artículos, resúmenes y palabras clave. El análisis y el mapeo de la investigación se realizaron con VOSviewer. El sinónimo más utilizado para el nombre de la planta fue "Boesenbergia rotunda", en el que Norzulaani Khalid de la Universidad de Malaya, Malasia, informó principalmente sobre investigaciones con las palabras clave "Boesenbergia rotunda", "pinostrobina" y "derivado". La mayoría de los investigadores provienen de instituciones del sudeste asiático como Malasia, Tailandia e Indonesia. Curiosamente, ningún investigador chino ha informado de estudios sobre este tema. Las revistas y editoriales que más artículos publican con estas tres palabras clave son Bioorganic and Medicinal Chemistry Letters y Elsevier. Esta información facilitará a los investigadores sobre este tema encontrar colaboraciones y determinar las revistas para publicar los resultados de sus investigaciones.

2.
J Adv Pharm Technol Res ; 12(3): 236-241, 2021.
Article in English | MEDLINE | ID: mdl-34345601

ABSTRACT

The estrogen hormone dependent accounts for a major cause in the incidence of women breast cancer. Thus, their receptor, especially the estrogen receptor α (ER-α), is becoming a target in endocrine treatment. These ligand-inducible nuclear functions are regulated by an array of phytochemical and synthetic compounds, such as 17 ß-estradiol and tamoxifen (4-hydroxytamoxifen [4OHT]). The Chinaberry (Melia azedarach) leaves are known naturally for relieving internal and external diseases. Previous studies revealed the potency of Melia's ethanolic extract and ethyl acetate fractions as anticancer; furthermore, this study aimed to resolve possible ER-α antagonist's mechanism and safety from M. azedarach leaves ethyl acetate fraction contents. Melia's phytochemical content was analyzed with electrospray ionization liquid chromatography-mass spectrometry, while its ER-α antagonist's potency was investigated by in silico. The computational docking was used to 3ERT (a human ER-α-4OHT binding domain complex) with Autodock Vina and related programs. The results presented Energy binding (ΔG) of Melia's quercetin 3-O-(2'',6''-digalloyl)-ß-D-galactopyranoside was similar to 4OHT, and lower than its agonist 17 ß-estradiol. Furthermore, the toxicity prediction of these compounds were revealed safer than 4OHT. The Melia's leaves ethyl acetate fraction, therefore, is a potential pharmacological material for further studies.

3.
Asian Pac J Cancer Prev ; 22(6): 1967-1973, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34181358

ABSTRACT

OBJECTIVE: Nature has provided us with many pharmaceutical resources so far. Breast cancer shows an increasing trend in the world for the last decade and becomes one of five leading causes of death. Among the plants, Melia azedarach L. has been used widely in traditional medicine for many ailments including breast cancer. Following our previous findings that the ethyl acetate fraction was the most active cytotoxic fraction against T47D cells, we aimed to isolate the cytotoxic compounds and further elucidate their apoptotic mechanisms. METHODS: The compounds were isolated through a series of chromatography with cytotoxicity evaluations. Identification of the isolated compounds was achieved by intensive spectroscopic analysis such as NMR, MS, and IR spectra. Cytotoxicity was evaluated by MTT method using doxorubicin as a reference compound. The expression of apoptosis-related factors was quantified by flow cytometry and immunocytochemistry. RESULTS: Two isomers of pregnane steroids with molecular weight 330.2087 (C21H30O3) were isolated from the EtOAc extract. Spectroscopic analysis revealed the structures as 17-ethylene-3,4-dihydroxy-14-methyl-18-norandrostene-16-one (1) and 17-ethylene-3,4-dihydroxy-5-pregnene-16-one (2), respectively. These compounds showed moderate cytotoxicity (IC50 172.9 and 62.2 µg/mL, respectively) comparable to doxorubicin (IC50 3.08 µg/mL). The execution of apoptosis may be related to the increase of the ratio of BAX/bcl-2 of the cells.  Conclusion: The EtOAc fraction of Melia azedarach L. leaves and the isolated 5-pregnene-16-one steroids are promising reagents for breast cancer treatment by introducing apoptosis to tumor cells. However, further researches are required to highlight its safety and usage in vivo.
.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/drug therapy , Melia azedarach/chemistry , Plant Leaves/chemistry , Pregnanes/pharmacology , Steroids/pharmacology , Doxorubicin/pharmacology , Female , Humans , Molecular Structure , Molecular Weight , Tumor Cells, Cultured
4.
Biotechnol Rep (Amst) ; 25: e00437, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32140442

ABSTRACT

Melia azedarach L. is used widely in traditional medicine for local or systemic ailments. Although studies exist on phytochemicals and potencies of Chinese and Indian cultivars of Melia, the present study investigated in vitro antioxidant properties of Melia wild type and its cytotoxicity against T47D cell. The ethanolic extract of the Melia leaves was fractionated with n-hexane, ethyl acetate and water, and the secondary metabolites were obtained. The antioxidant properties were determined with IC50 DPPH (2,2-diphenyl-1-pycrylhydrazyl) radical and FRAP (ferric reducing antioxidant power), while the cytotoxicity was determined with the MTT method. The total phenolic (TPC) and ß-sitosterol (SC) contents were also measured. The results showed that the ethyl acetate fraction had higher antioxidant and cytotoxic activities (IC50 211.89 ±â€¯10.86 and 147.90 ±â€¯8.49 µg/mL, respectively) than others. Significant (p < 0.05) correlations were observed between TPC, IC50DPPH, FRAP and IC50T47D. LC-EI MS analysis of the ethyl acetate fraction revealed the steroid and triterpenoid saponins, limonoids and quercetin glycosides, which influenced the medicinal properties of the Melia leaves. Melia azedarach L. wild type leaf extracts are a promising natural resource for managing breast cancer.

5.
J Adv Pharm Technol Res ; 11(4): 157-162, 2020.
Article in English | MEDLINE | ID: mdl-33425697

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has attracted worldwide attention. Andrographis paniculata (Burm. f) Ness (AP) is naturally used to treat various diseases, including infectious diseases. Its Andrographolide has been clinically observed for anti-HIV and has also in silico tested for COVID-19 main protease inhibitors. Meanwhile, the AP phytochemicals content also provides insight into the molecular structures diversity for the bioactive discovery. This study aims to find COVID-19 main protease inhibitor from AP by the molecular docking method and determine the toxicity profile of the compounds. The results obtained two compounds consisting of flavonoid glycosides 5,4'-dihydroxy-7-O-ß -D-pyran-glycuronate butyl ester and andrographolide glycoside 3-O-ß-D-glucopyranosyl-andrographolide have lower free binding energy and highest similarity in types of interaction with amino acid residues compared to its co-crystal ligands (6LU7) and Indinavir or Remdesivir. The toxicity prediction of the compounds also reveals their safety. These results confirm the probability of using AP phytochemical compounds as COVID-19 main protease inhibitors, although further research must be carried out.

6.
Article in English | MEDLINE | ID: mdl-31851612

ABSTRACT

Background Prediction of the properties of absorption, distribution, metabolism, excretion, and toxicity (ADMET) from a compound is essential, especially for modified novel compounds. Previous research has successfully designed several modified compounds of 5-O-benzoyl derivatives from pinostrobin, a flavanone that has cytotoxic activity. This study aims to describe the properties of ADMET from the 5-O-benzoylpinostrobin derivative. Methods Prediction of the properties of ADMET was carried out using three web servers consisting of SwissADME, pkCSM, and ProTox-II. The observed parameters are divided into ADMET parameters. Results In general, absorption parameters indicate that the 5-O-benzoylpinostrobin derivative has lower water solubility than the parent pinostrobin. Distribution parameters show mixed results for distribution through the blood-brain barrier. Metabolism parameters showed different results with generally inhibitory activity shown in CYP2C19, CYP2C9, and CYP3A4. The excretion parameters showed a higher total clearance than pinostrobin except in the trifluoromethyl derivative. The toxicity parameters showed both pinostrobin and the 5-O-benzoylpinostrobin derivatives, including the class IV toxicity category with the lowest LD50 value indicated by the nitro derivative of 1500, with the possible target of the androgen receptor and prostaglandin G/H synthase 1. Conclusions Overall, the 5-O-benzoylpinostrobin derivative has the predicted ADMET profile that is relatively similar to pinostrobin, with the most noticeable difference being shown in the absorption parameters where all 5-O-benzoylpinostrobin derivatives have lower water solubility than pinostrobin.


Subject(s)
Flavanones/pharmacokinetics , Flavanones/toxicity , Humans , Molecular Structure , Software
7.
Article in English | MEDLINE | ID: mdl-31855568

ABSTRACT

Background Previous studies have shown that 5-O-benzoylpinostrobin derivatives is a potential anti-breast cancer, with the highest potential being the HER2 inhibitors, is a protein's member of the epidermal growth factor receptor (EGFR) family. Overexpression of EGFR itself is known to be one of the causes of other cancer, including non-small cell lung cancer (NSCLC). Thus, it is possible that 5-O-benzoylpinostrobin derivatives can also inhibit the overexpression of EGFR in NSCLC. In the case of NSCLC, mutations of EGFR are often found in several amino acids, such as L858R, T790M, and V948R. This study aimed to determine the potential of 5-O-benzoylpinostrobin derivatives as an inhibitor of wild type and L858R/T790M/V948R-mutant EGFR. Methods Docking was performed using AutoDock Vina 1.1.2 on both wild type and L858R/T790M/V948R-mutant EGFR. Parameters observed, consisted of free energy of binding (ΔG) and amino acid interactions of each ligand. Results Docking results showed that all 5-O-benzoylpinostrobin derivatives showed a lower ΔG for both wild type and L858R/T790M/V948R-mutant EGFR, with the lowest ΔG shown by 4-methyl-5-O-benzoylpinostrobin and 4-trifluoromethyl-5-O-benzoylpinostrobin. Both the ligands have the similarity of interacting amino acids compared to reference ligands between 76.47 and 88.24%. Specifically, the ΔG of all test ligands was lower in mutant EGFR than in the wild type, which indicates the potential of the ligand as EGFR inhibitors where a mutation to EGFR occurs. Conclusions These results confirm that 5-O-benzoylpinostrobin derivatives have the potential to inhibit EGFR in both wild type and L858R/T790M/V948R-mutant.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Flavanones/pharmacology , Molecular Docking Simulation , ErbB Receptors/genetics , Humans , Molecular Structure , Mutation , Protein Binding
8.
Bioorg Med Chem Lett ; 20(7): 2086-9, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20219370

ABSTRACT

Pinostrobin (5-hydroxy-7-methoxyflavanone) obtained in relatively large amounts from fingerroot (Boesenbergia pandurata) was converted to its C-6 and C-8 prenylated derivatives. The Mitsunobu reaction, europium(III)-catalyzed Claisen-Cope rearrangement, and Claisen reaction coupled with cross-metathesis were used as the key steps. Using a sealed-vessel microwave reactor, the Mitsunobu and Claisen/Cope reactions occurred smoothly with short reaction times and in satisfactory yields. The target compounds and five new intermediary substances showed cytotoxic activity toward SK-BR-3, MCF-7, PC-3, and Colo-320DM human tumor cell lines, and all of them had significantly lower IC(50) (microM) values than pinostrobin.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Flavanones/chemistry , Flavanones/pharmacology , Neoplasms/drug therapy , Zingiberaceae/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , Flavanones/isolation & purification , Humans , Inhibitory Concentration 50 , Microwaves , Prenylation
SELECTION OF CITATIONS
SEARCH DETAIL
...